BASIC EXPONENT PROPERTIES COMMON CORE ALGEBRA II HOMEWORK

FLUENCY

1. The steps in finding the product of $(3x^2y^5)$ and $(7x^5y^2)$ are shown below. Fill in either the associative property or the commutative property to justify each step.

$$(3x^2y^4)(7x^5y^2)$$

$$= (3x^2)(y^4 \cdot 7)(x^5y^2)$$

 $= (3x^2)(y^4 \cdot 7)(x^5y^2)$ Associative

$$= (3x^2)(7y^4)(x^5y^2)$$

 $= (3x^2)(7y^4)(x^5y^2) \qquad Commutative$

$$=3\left(x^2\cdot7\right)\left(y^4x^5y^2\right)$$

Associative

$$=3(7x^2)(x^5y^4y^2)$$

 $=3(7x^2)(x^5y^4y^2)$ Commutative

$$= (3 \cdot 7) \left(x^2 x^5\right) \left(y^4 y^2\right)$$

Associative

$$=21x^7y^6$$

2. Find each of the following products of monomials.

(a)
$$(3x^2)(10x^4)$$

(b)
$$(-2x^5)(-9x)$$

(c)
$$(4x^2y)(8x^5y^3)$$

(d)
$$(5x^4)^2$$

(e)
$$(-4t^2)(-15t^5)$$
 (f) $(7x)(5xy^4)$

(f)
$$(7x)(5xy^4)$$

$$(g) \left(\frac{2}{3} x^{A}\right) (12 x)$$

(h)
$$(2x^2)(5x)(-6x^4)$$

3. Fill in the missing portion of each product to make the equation an identity.

(a)
$$18x^6 = 3x^2 \left(\frac{6x^4}{} \right)$$

(b)
$$40x^2y^7 = 8xy^2(5x^5)$$
 (c) $90x^4y = 15xy(6x^3)$

(c)
$$90x^4y = 15xy(\sqrt{6x^3})$$

(d)
$$24x^6 = -3x^2(-8x^4)$$

(e)
$$-48x^4y^{10} = -16x^2y^2(3x^2)$$

(d)
$$24x^6 = -3x^2(\frac{-8x^4}{})$$
 (e) $-48x^4y^{10} = -16x^2y^2(\frac{3x^2y^8}{})$ (f) $49x^8y^6 = 7x^4y^3(\frac{7y^4y^3}{})$

4. Use the distributive property to write each of the following products as polynomials.

(a)
$$4x(5x+2)$$

(b)
$$-5x(10-x)$$

$$-50X+5X^2$$

(c)
$$6x(x^2-4x+8)$$

(d)
$$-10x^2(2x^2+x-8)$$

(e)
$$7xy^3(2x^2y-5y^5)$$

(f)
$$8x^2y^2(x^3-2x^2y+5xy^2-y^3)$$

(g)
$$-7x^3(4x^2+2x-1)$$

(h)
$$-16t(2t^2-2t+3)$$

(i)
$$12xy(x^2-2xy+y^2)$$

5. Fill in the missing part of each product in order to make the equation into an identity.

(a)
$$10x^5 - 35x^3 = 5x^3 \left(2x^2 - 7 \right)$$

(b)
$$-8x^3y + 2x^2y^2 - 10xy^3 = -2xy(4x^2 - x + 5y^2)$$

(c)
$$-18t^2 + 45t^5 = -9t^2(2 - 5t^3)$$

(d)
$$45x^4 - 30x^3 + 15x^2 = 15x^2(3x^2 - 2x + 1)$$

(e)
$$x(x+5)+6(x+5)=(x+5)(\underline{x+6})$$
 (f) $x^2(x-3)-(x-3)=(x-3)(\underline{x^2-1})$

(f)
$$x^2(x-3)-(x-3)=(x-3)(-x^2-1)$$

REASONING

Another very important exponent property occurs when we have a monomial with an exponent that is then raised to yet another power. See if you can come up with a general pattern.

6. Write each of the following out as extended products and then simplify. The first is done as an example.

(a)
$$(x^2)^3 = x^2 \cdot x^2 \cdot x^2 = x^6$$

(b)
$$(x^3)^2 = \chi^3 \cdot \chi^3 = \chi^6$$

(c)
$$(x^5)^4 = \chi^5 \cdot \chi^5 \cdot \chi^5 \cdot \chi^5 = \chi^{20}$$

(d)
$$(x^4)^3 = X^4 \cdot X^4 \cdot X^4 = X^{12}$$

So, what is the pattern? For positive integers a and b: $(x^a)^b = X^{ab}$

COMMON CORE ALGEBRA II, UNIT #1 - ESSENTIAL ALGEBRA CONCEPTS - LESSON #4 eMathInstruction, Red Hook, NY 12571, © 2015

